Journal of Chromatography, 504 (1990) 163–178 Elsevier Science Publishers B.V., Amsterdam — Printed in The Netherlands

CHROM. 22 189

Lipophilic character of cardiac glycosides

R_M values as lipophilicity parameters

G. L. BIAGI*, A. M. BARBARO and M. C. GUERRA
Istituto di Farmacologia, Università di Bologna, Bologna (Italy)
P. A. BOREA
Istituto di Farmacologia, Università di Ferrara, Ferrara (Italy)
and
M. RECANATINI
Dipartimento di Scienze Farmaceutiche, Università di Bologna, Bologna (Italy)
(First received September 11th, 1989; revised manuscript received December 4th, 1989)

SUMMARY

Chromatographic R_M values were measured for a series of 41 cardiac glycosides and aglycones. By means of the ΔR_M values it was possible to calculate the R_M values for a further 19 compounds. An excellent correlation was found between the present R_M values and those measured or calculated with the Cohnen *et al.* system. In a similar way, the R_M values were shown to be well correlated with both high-performance liquid chromatographic data and octanol-water partition coefficients (log *P*). The additive contribution of each substituent group to the overall lipophilicity of the molecule seems to be constant in each subset of *Digitalis* derivatives.

INTRODUCTION

The cardiac steroids, despite their long history, are among the most important drugs in modern therapeutics. However, quantitative studies of the relationships between structure and activity (QSAR) of these compounds have received little attention¹⁻³. Only in recent times has there been some increasing interest in QSAR studies of cardiac steroids⁴⁻⁹. As the lipophilic character is one of the most important physico-chemical factor determining the biological activity of drugs, several workers^{4,6,7,10} have studied the determination of lipophilicity indices of cardiac steroids. Nevertheless, there is still a lack of data describing the lipophilic character of most of these compounds. The determination of the classical octanol–water partition coefficient is the main method for establishing the lipophilic character of drugs. However, the R_M and log k' values obtained by reversed-phase partition thin-layer (TLC) and high-performance liquid chromatography (HPLC) were shown to be well

correlated with the partition coefficients of many chemicals and have been proposed as an alternative method^{11,12}. The R_M values were calculated by means of the equation

$$R_M = \log\left(\frac{1}{R_F} - 1\right)$$

An earlier contribution to the study of the relationship between chemical structure and chromatographic behaviour was provided by Nover and co-workers^{13,14} by means of adsorption paper and thin-layer chromatography. With regard to a QSAR study, the purpose of this work was to determine or calculate R_M and $\log k'$ values for a large series of cardiac steroids.

EXPERIMENTAL

Chemicals

Several cardiac glycosides and aglycones (compounds 4, 8, 41, 43, 44, 45, 46, 55, 57, 58 and 60) were a generous gift from Simes (Milan, Italy). Other compounds were obtained from commercial sources. All the drugs were used without further purification. All solvents were of analytical-reagent or HPLC grade.

Determination of R_M values

The TLC technique had been described previously¹⁵. Glass plates (20×20 cm) were coated with silica gel G (E. Merck, Darmstadt, F.R.G.). In order to control the pH of the stationary phase, a slurry of silica gel G was prepared with 0.09 *M* sodium hydroxide solution. A non-polar stationary phase was obtained by impregnating the silica gel G layer with silicone DC 200 (viscosity 350 cSt) (Applied Science Labs., State College, PA, U.S.A.). The impregnation was carried out by developing the plates in a 5% silicone solution in diethyl ether. Eight plates could be impregnated in a single chromatographic chamber containing 200 ml of the silicone solution. The plates were left in the chamber for 12 h, *i.e.*, for several hours after the silicone solution had reached the top of the plates.

A migration distance of 10 cm was obtained on all plates by cutting the layer at 12 cm and spotting the compounds on a line 2 cm from the lower edge of the plate. The mobile phase saturated with silicone oil was aqueous buffer (sodium acetate–Veronal buffer, 1/7 M at pH 7.2), alone or mixed with various amounts of acetone. Two plates were developed simultaneously in a chromatographic chamber containing 200 ml of mobile phase, at room temperature.

The cardioactive drugs were dissolved in methanol, acetone or water (1-2 mg/ml) and 1 μ l of solution was spotted randomly on the plates in order to avoid any systematic error. The developed plates were dried and sprayed with an alkaline solution of potassium permanganate. After a few minutes at 120°C, yellow spots appeared on an intense pink background.

Determination of log P values

The *n*-octanol-water partition coefficients of six genins were measured by means of the shake-flask method¹⁶, using distilled water as the polar phase and *n*-octanol as

the lipid phase; each phase was previously saturated with the other one and centrifuged if not clear.

A carefully weighed amount of compound was dissolved in the octanol phase, and an appropriate amount of water was added; the bottles were then shaken gently for ca. 5 min and centrifuged for 1.0 h at 2000 rpm (895 g). The ratio of the octanol and water volumes was chosen so as to give a reliable UV absorbance at the wavelength of maximum absorption.

The concentration in the aqueous phase was determined spectrophotometrically by means of a Varian DMS-90 UV-visible spectrophotometer; each reported log P value is the average of at least four determinations with $s \leq 0.03$.

Determination of log k' values

HPLC was performed on a Waters Assoc. 820 chromatography workstation, using a μ Bondapak C₁₈ column (300 × 3.9 mm I.D.) (Waters Assoc., Milford, MA, U.S.A.), packed with silica gel (particle size 10 μ m) with a C₁₈ chemically bonded non-polar stationary phase¹⁷. A Waters Assoc. UV detector at 220 nm and Hamilton 802 chromatographic syringes (25 μ l) were used. The compounds were dissolved in methanol (1 mg/ml) and applied to the column in 5- μ l volumes. All solutions and reagents were first filtered through Millipore filters (Type FH, pore size 0.5 μ m). The separation was carried out using acetonitrile–water mixtures as the mobile phase at a flow-rate of 1 ml/min. The acetonitrile concentration ranged from 20–40 to 50–70%. The retention times were expressed as

$$\log k' = \log \left(\frac{t_x - t_0}{t_0} \right)$$

where t_x is the retention time of the compound and t_0 that of the solvent front.

RESULTS

R_M values and lipophilicity of cardioactive steroids

The reversed-phase TLC of the cardioactive compounds showed that most of them did not move from the starting line when the mobile phase was aqueous buffer alone. In order to obtain suitable R_M values it was necessary to add acetone to the mobile phase. Only with the six most hydrophilic compounds, ouabain, strophanthidol, k-strophanthidin, k-strophanthin β , k-strophanthoside and digoxigenin, could reliable R_M values be obtained even at 0% acetone in the mobile phase. However, as usual in TLC and HPLC, for all the compounds there was a linear relationship between R_M values and a range of acetone concentration.

The equations describing such a linear relationship allowed the calculation of extrapolated R_M values at 0% acetone in the mobile phase for the compounds that did not migrate with the aqueous buffer alone. The validity of the extrapolation technique is shown by the fact that the experimental R_M values of 0% acetone of the above six most hydrophilic compounds are very close to the extrapolated R_M values, calculated for the same compounds over a wider range of acetone concentrations. All the extrapolated R_M values are reported in Tables I and II.

The range of the linear relationship between R_M values and acetone concen-

Comp	puno	Structure		Empirical	Molecular	R _M ^c		
No.	Generic name	Genin	Side-chain at C-3-β-OH	mannin	mgiaw	This work	Cohnen et al. ¹⁰	Dzimiri et al. ⁷
-	Digoxigenin	Digoxigenin		C23H34O5	390.53	0.98	0.49	-0.03
2	Digoxigenin monodigitoxoside	Digoxigenin	D-Digitoxose	C ₂₉ H ₄₄ O ₈	520.67	1.24	0.98	-0.01
б	Digoxigenin bisdigitoxoside	Digoxigenin	2 D-Digitoxose	C ₃₅ H ₅₄ O ₁₁	650.81	1.65	1.23	0.17
4	Digoxin	Digoxigenin	3 D-Digitoxose	C ₄₁ H ₆₄ O ₁₄	780.92	2.01	1.78	0.23
S	α-Acetyldigoxin	Digoxigenin	3 D-Digitoxose + acetyl	C43H66015	822.91	2.27	2.05	0.49
9	β -Acetyldigoxin	Digoxigenin	3 D-Digitoxose + acetyl	C ₄₃ H ₆₆ O ₁₅	822.91	2.38	2.10	0.70
2	Lanatoside C	Digoxigenin	3 D-Digitoxose + acetyl	$C_{49}H_{76}O_{20}$	985.10	2.19	1.84	
			+ D-glucose					
×	Deslanoside C	Digoxigenin	3 D-Digitoxose + D-glucose	$C_{47}H_{74}O_{19}$	943.11	1.86	1.55"	I
6	α, β -Diacetyldigoxin	Digoxigenin	3 D-Digitoxose +	$C_{45}H_{68}O_{16}$	864.95	2.89	2.37ª	1.21
			2 acciyi					
10	12-Acetyldigoxin	12-Acetyldigoxigenin	3 D-Digitoxose	C ₄₃ H ₆₆ O ₁₅	822.96	2.96		0.89
Π	12-Acetyl- <i>β</i> -methyldigoxin	12-Acetyldigoxigenin	3 D-Digitoxose + methyl	$C_{44}H_{68}O_{15}$	836.99	3.45	I	1.26
12	∞-Methyldigoxin	Digoxigenin	3 D-Digitoxose + methyl	$C_{42}H_{66}O_{14}$	795.08	2.50	2.29ª	0.54
13	β -Methyldigoxin	Digoxigenin	3 D-Digitoxose + methyl	$C_{42}H_{66}O_{14}$	795.08	2.48	2.29	0.60
14	α, β -Dimethyldigoxin	Digoxigenin	3 D-Digitoxose + 2 mathul	$C_{43}H_{68}O_{14}$	809.11	2.98"	2.80"	0.94
15	Digitaviganin	Diaitoviaanin	2 monty		03120	501		
22				C23 T34 U4	00.4/0	56.1	96.1	1.01
10	Digitoxigenin monodigitoxoside	Digitoxigenin	D-Digitoxose	$\mathrm{C}_{29}\mathrm{H}_{44}\mathrm{O}_7$	504.67	2.23	2.34	1.05
11	Digitoxigenin bisdigitoxoside	Digitoxigenin	2 D-Digitoxose	$C_{35}H_{54}O_{10}$	634.81	2.65	2.44	1.28
18	Digitoxin	Digitoxigenin	3 D-Digitoxose	$C_{41}H_{64}O_{13}$	764.92	3.18	2.92	1.32
6]	œ-Acetyldigitoxin	Digitoxigenin	3 D-Digitoxose + acetyl	$C_{43}H_{66}O_{14}$	806.91	3.54	3.21 ^a	I

R_M VALUES OF CARDIAC GLYCOSIDES AND AGLYCONES OF DIGITALIS SPP.

TABLE I

66

vontonesticDigitoxigeninL-Knamnose $C_{29}H_{44}O_8$ 24.00 24.00 iterifolin ^b DigitoxigeninL-Thevetose $C_{20}H_{44}O_8$ 534.70 211 iterifolin ^b GitoxigeninDigitoxigeninL-Thevetose $C_{20}H_{44}O_8$ 534.70 211 itoxigenin bisdigitoxosideGitoxigeninD-Digitoxose $C_{23}H_{44}O_8$ 534.70 211 itoxigenin bisdigitoxosideGitoxigenin 2 P-Digitoxose $C_{23}H_{44}O_{13}$ 682.80 119 itoxiaGitoxigenin 2 P-Digitoxose $C_{34}H_{45}O_{13}$ 682.80 19 itoxinGitoxigenin 2 P-Digitoxose $C_{34}H_{45}O_{13}$ 682.80 19 AcetylgitoxinGitoxigenin 3 P-Digitoxose $C_{41}H_{65}O_{13}$ 82.201 33.7 AcetylgitoxinGitoxigenin 3 P-Digitoxose $C_{41}H_{65}O_{13}$ 82.201 33.7 AcetylgitoxinGitoxigenin 3 P-Digitoxose $C_{41}H_{65}O_{13}$ 82.901 33.7 AcetylgitoxinGitoxigenin 3 P-Digitoxose $C_{45}H_{66}O_{13}$ 84.95 3.7 anatoside B 3 P-Digitoxose $C_{45}H_{66}O_{16}$ 864.95 3.7 f*-Diacetylgitoxin 3 P-Digitoxose $C_{45}H_{66}O_{16}$ 90.87 4.5 f*-Diacetylgitoxin 3 P-Digitoxose $C_{45}H_{66}O_{16}$ 90.87 4.5 f*-Diacetylgitoxin 6 -Caetylgitoxigenin 3 P-Digitoxose $C_{45}H_{66}O_{16}$ 90.87 4.5 f*-Diacetylgitoxin

^b Evomonoside, nerificilin, oleandrin and 16-desacetyloleandrin are listed in Table I as they are characterized by *Digitalis* aglycones.

e TLC system: see text.

R_M V.	ALUES OF CARDIAC GLYCOSII	DES AND AGLYCONES	FROM OTHER BOTANIC	AL SOURCE	S			
Comp	puno	Structure		Empirical	Molecular	R _M ^b		
No.	Generic name	Genin	Side-chain at C-3-β-0H	Jormana	neigni	This work	Cohnen et al. ¹⁰	Dzimiri et al. ⁷
41	k-Strophanthidin	Strophanthidin		C ₂₃ H ₃₂ O ₆	404.49	0.94	0.65	-0.16
42	Strophanthidin-3-acctate	Strophanthidin	Acetyl	C ₂₅ H ₃₄ O ₇	446.48	1.23	0.94^{a}	ł
43	Cymarin	Strophanthidin	D-Cymarose	C ₃₀ H ₄₄ O ₉	548.65	1.34	1.23	-0.10
44	k-Strophanthin- β	Strophanthidin	D-Cymarose +	C ₃₆ H ₅₄ O ₁₄	710.84	1.02	1.00^	-0.50
			D-glucose					
45	k-Strophanthoside	Strophanthidin	D-Cymarose + 2 D-glucose	C ₄₂ H ₆₄ O ₁₃	873.03	0.99	0.77ª	-0.62
46	Convallatoxin	Strophanthidin	L-Rhamnose	C ₂₉ H ₄₂ O ₁₀	550.63	1.29	1.26^{a}	ł
47	Desglucocheirotoxin	Strophanthidin	D-Gulomethylose	C ₂₉ H ₄₂ O ₁₀	550.63	1.29ª	0.92^{a}	ţ
48	Olitoriside	Strophanthidin	D-Boivinose +	C ₃₅ H ₅₂ O ₁₄	696.79	1.10^{a}	0.91	١
			D-glucosc					
49	Helveticoside	Strophanthidin	D-Digitoxose	C ₂₉ H ₄₂ O ₉	534.63	1.21	1.14ª	ł
50	Erysimoside	Strophanthidin	D-Digitoxose +	C ₃₅ H ₅₂ O ₁₄	696.79	1.03ª	0.91 ^a	ł
			D-glucose					
51	Strophanthidol	Strophanthidol	I	C233H3406	406.50	0.73	0.46^{a}	١
52	Cymarol	Strophanthidol	D-Cymarose	C ₃₀ H ₄₆ O,	550.65	1.19	1.04	ł
53	Convallatoxol	Strophanthidol	L-Rhamnose	C ₂₉ H ₄₄ O ₁₀	552.65	1.11ª	1.07	ł
54	Helveticosol	Strophanthidol	D-Digitoxose	C29H4409	536.65	1.03"	0.95"	ł
55	Heptaacetyl-k-strophanthoside	Strophanthidin	D-Cymarose + 2	$C_{56}H_{78}O_{26}$	1166.9	3.41	2.80^{a}	١
			D-glucose + 7 acetyl					
56	Ouabagenin	Ouabagenin	1	C ₂₃ H ₂₄ O ₈	438.50	0.18" -	-0.05ª	١
57	Ouabain	Ouabagenin	L-Rhannose	$C_{29}H_{44}O_{12}$	584.64	0.53	0.22	-0.70
58	Proscillaridin	Scillarenin	L-Rhamnose	$C_{30}H_{42}O_{8}$	530.64	2.15	1.92	1
59	Scillaren A	Scillarenin	L-Rhamnose + D-glucose	C ₃₆ H ₅₂ O ₁₃	692.78	1.97ª	1.694	١
60	Peruvoside	Cannogenin	L-Thevetose	C ₃₀ H ₄₄ O ₉	548.65	1.68	ļ	ì
ļ								

168

TABLE 11

^a Calculated R_M values (see text). ^b TLC system: see text. trations is limited by the fact that at lower and higher acetone concentrations all the compounds tend not to move from the starting line or to migrate with the solvent front, respectively, *i.e.*, to deviate from the linear relationship. Therefore, the extrapolated R_M values in Tables I and II were obtained from equations calculated by means of R_M

TABLE III

۱

RANGES OF ACETONE CONCENTRATIONS USED FOR THE CALCULATION OF THE TLC EQUATIONS

Compound No	Acetone	TLC equation		
140.	runge (70)	$a = R_M$	b	r
57	0-24	0.535 ± 0.019	-0.066 ± 0.001	0.996
51	0–24	0.732 ± 0.071	-0.033 ± 0.002	0.985
41	024	$0.938~\pm~0.098$	-0.038 ± 0.038	0.967
1	0-32	0.980 ± 0.047	-0.048 ± 0.002	0.992
45	0-32	0.991 <u>+</u> 0.162	-0.058 ± 0.007	0.961
44	0-36	1.022 ± 0.184	-0.063 ± 0.011	0.959
52	4-32	1.194 ± 0.043	-0.050 ± 0.002	0.995
49	436	1.213 ± 0.080	-0.045 ± 0.003	0.982
42	4-40	1.230 ± 0.100	-0.043 ± 0.003	0.987
2	4–24	1.240 ± 0.118	-0.063 ± 0.007	0.972
46	4-32	1.295 ± 0.090	-0.059 ± 0.004	0.983
43	4-24	1.343 ± 0.085	-0.065 ± 0.005	0.986
38	8-36	1.581 + 0.070	-0.043 + 0.002	0.991
3	8-32	1.650 + 0.112	-0.063 ± 0.005	0.983
60	8-50	$1.684 \ \pm \ 0.117$	-0.050 ± 0.004	0.976
26	8-50	1.719 + 0.044	-0.050 ± 0.001	0.992
8	8-40	1.859 + 0.131	-0.068 ± 0.005	0.981
15	16-50	1.932 + 0.058	-0.050 + 0.002	0.996
4	1650	2.010 + 0.094	-0.062 ± 0.003	0.989
25	16-50	2.141 + 0.221	-0.055 ± 0.006	0.986
58	16-50	2.149 + 0.120	-0.054 ± 0.003	0.985
7	16-50	2.187 ± 0.120	-0.066 ± 0.003	0.990
16	20-50	2.232 + 0.122	-0.058 ± 0.004	0.990
5	20-50	2.268 + 0.118	-0.063 ± 0.003	0.994
39	20-50	2.345 + 0.139	-0.057 + 0.004	0.989
6	24-50	2.377 + 0.119	-0.067 ± 0.003	0.994
13	20-50	2.477 + 0.057	-0.070 + 0.002	0.985
12	2050	2.503 + 0.095	-0.071 + 0.003	0.995
37	20-60	2.504 + 0.124	-0.062 ± 0.003	0.991
17	28-55	2.653 + 0.147	-0.065 ± 0.003	0.993
9	28-55	2.887 + 0.122	-0.070 ± 0.003	0.994
36	28-50	2.933 + 0.285	-0.068 ± 0.009	0.976
10	28-55	2.962 + 0.209	-0.072 ± 0.005	0.988
30	32-40	3.000 + 0.016	-0.076 + 0.001	0.999
33	28-50	3.121 + 0.113	-0.078 + 0.003	0.996
18	28-60	3.183 ± 0.141	-0.070 ± 0.003	0.992
21	28-55	3.380 ± 0.120	-0.072 ± 0.003	0.996
55	28-50	3.406 + 0.120	-0.066 + 0.003	0.996
11	28-50	3.446 ± 0.303	-0.081 ± 0.008	0.985
19	36-50	3.540 ± 0.450	-0.074 ± 0.010	0.981
35	40-60	4.588 ± 0.800	-0.088 ± 0.017	0.966

values determined with acetone concentrations ranging from 0 to 24% or from 36–40 to 50–60% depending on the lipophilicity of the test compounds. The most hydrophilic compound, ouabain, shows a linear relationship between R_M values and acetone concentration in the range 0–24%. For the most lipophilic compound, penta-acetylgitoxin, acetone concentrations ranging from 40 to 60% were used.

The ranges of acetone concentrations and the TLC equations are reported in Table III, where a and b are the intercept and slope, with their standard errors, respectively, and r is the correlation coefficient. The intercepts $(a=R_M)$ are also reported in Tables I and II. In Table III the compounds are listed in order of increasing lipophilicity to show the good correlation between extrapolated R_M values and ranges of acetone concentrations. The slopes in Table III show that the equations describe a series of almost parallel straight lines.

Cohnen *et al.*¹⁰ measured the R_M values of a series of cardioactive steroids by means of a TLC technique which seems to be very similar to our own system. Their extrapolated R_M values at 0% acetone in the mobile phase are reported in Tables I and II. A very good correlation is shown by eqn. 1 between the present R_M values and those obtained by Cohnen *et al.*¹⁰ for a series of 23 compounds for which the experimental R_M values were available in both TLC systems.

$$R_M = 0.361 (\pm 0.063) + 0.937 (\pm 0.033) R_{MCohnen}$$
(1)
(n = 23; r = 0.987; s = 0.121; F = 784.7; P<0.005)

In eqn. 1 and all subsequent equations, n is number of data points, r is the correlation coefficient, s is the standard error of the equation and F is the value of the F-test.

The experimental R_M values provide some understanding of the influence of substituent groups determining the lipophilicity of the whole molecule. The *Digitalis* glycosides can be grouped into three families on the basis of the aglycones (Table I). Cardiac glycosides and aglycones from different botanical sources are listed in Table II. The presence of digitoxosyl, acetyl or methyl group(s) in the sugar residue at C-3 increases the lipophilic character. The ΔR_M values reported in Table IV were used in the calculation of the R_M values of the mono- and bisdigitoxosides and also acetyl derivatives of trisdigitoxosides for which the experimental R_M values were not available. In the Cohnen *et al.* system the R_M value of helveticoside was obtained by adding the average ΔR_M value of the digitoxosyl group to the R_M value of strophanthidin.

The R_M values of desacetyllanatoside C, strophanthidin-3-acetate, pentaacetylgitoxin and heptaacetyl-k-strophanthoside in the Cohnen *et al.* system were calculated from the experimental R_M values for lanatoside C, strophanthidin, 16-acetylgitoxin and k-strophanthoside by subtracting or adding an average ΔR_M of 0.29 for each of the acetyl groups.

$$R_{M} \text{ (lanatoside B)} = R_{M} \text{ (gitoxin)} + [R_{M} \text{ (lanatoside A)} - R_{M} \text{ (digitoxin)}] = 2.83 + (3.09 - 2.92) = 3.00 R_{M} \text{ (lanatoside B)} = R_{M} \text{ (gitoxin)} + [R_{M} \text{ (lanatoside C)} - R_{M} \text{ (digoxin)}] = 2.83 + (1.84 - 1.78) = 2.89 $\bar{x} = 2.94$$$

TABLE IV

INFLUENCE OF SUBSTITUENT GROUPS ON THE LIPOPHILIC CHARACTER

Group	Position	Compounds	ΔR_{M}	ΔR_M (Cohnen et al. ¹⁰)
ОН	C-16	Gitoxin vs. digitoxin Gitoxigenin vs. digitoxigenin	-0.18 -0.21	$-0.09 \\ -0.19$
			$\bar{x} = -0.19$	$\bar{x} = -0.14$
	C-12	Digoxin vs. digitoxin	-1.17	-1.14
		Digoxigenin monodigitoxoside vs. digitoxigenin monodigitoxoside Digoxigenin hisdigitoxoside vs.	-0.99	-1.36
		digitoxigenin bisdigitoxoside Digoxigenin vs. digitoxigenin	$-1.00 \\ -0.95$	-1.21 - 1.07
			$\bar{x} = -1.03$	$\bar{x} = -1.19$
OCOCH3	C-16	Oleandrigenin vs. digitoxigenin 16-Acetylgitoxin vs. digitoxin	$-0.35 \\ -0.25$	-0.22
			$\bar{x} = -0.30$	
	C-12	12-Acetyldigoxin vs. digitoxin	-0.22	
OCOCH ₃ vs. OH	C-16	Oleandrin vs. 16-desacetyloleandrir	n —	-0.29
·		Oleandrigenin vs. gitoxigenin 16-Acetylgitoxin vs. gitoxin	-0.14 - 0.07	-0.03
			$\bar{x} = -0.10$	$\bar{x} = -0.16$
	C-12	12-Acetyldigoxin vs. digoxin 12-Acetyl-β-methyldigoxin vs.	0.95	_
		β -methyldigoxin	0.97	_
			$\bar{x} = 0.96$	
CH ₂ OH vs. CHO	C-10	Cymarol vs. cymarin Strophanthidol vs. strophanthidin	-0.15 -0.21	-0.19 -
			$\bar{x} = -0.18$	
CHO vs. OH	C-16	16-Formylgitoxin vs. gitoxin	-0.50	-
OCOCH ₃ vs. OH	Side chain	 α-Acetyldigitoxin vs. digitoxin α-Acetyldigoxin vs. digoxin β-Acetyldigoxin vs. digoxin α.β-Diacetyldigoxin vs. digoxin/2 	0.36 0.26 0.37 0.44	0.27 0.32
		Pentaacetylgitoxin vs. 16-acetylgitoxin/4	0.41	_
		Heptaacetyl-k-strophanthoside vs. k-strophanthoside/7	0.34	_
			$\bar{x} = 0.35$	$\bar{x} = 0.29$
Glucosyl vs. OH	Side-chain	Deslanoside vs. digoxin	-0.15	_
·		Lanatoside C vs. a-acetyldigoxin	-0.08	-0.21
		Lanatoside C vs. β -acetyldigoxin	-0.19	-0.26
		Lanatoside A vs. α -acetyldigitoxin	-0.16	_
		k-Strophanthoside vs. cymarin/2	-0.52 -0.17	_
			$\bar{x} = -0.18$	$\bar{x} = -0.23$

(Continued on p. 172)

Group	Position	Compounds	ΔR_M		ΔR _M (Col et al	nnen ¹⁰)
Rhamnosyl v.s. OH	Side-chain	Convallatoxin vs. k-strophanthidin Evomonoside vs. digitoxigenin	1	0.35		0.27
Digitoxosyl vs. OH	Side-chain	Digoxigenin monodigitoxoside vs. digoxigenin Digoxigenin bisdigitoxoside vs.		0.26		0.49
		digoxigenin/2		0.33		0.37
		Digoxin vs. digoxigenin/3		0.34		0.43
		Digitoxigenin monodigitoxoside vs digitoxigenin Digitoxigenin bisdigitoxoside vs.		0.30		0.78
		digitoxigenin/2		0.36		0.44
		Digitoxin vs. digitoxigenin/3		0.42		0.45
		Gitoxin vs. gitoxigenin/3		0.43		0.49
		Helveticoside vs. k-strophanthidin		0.27		_
		16-Acetylgitoxin vs. oleandrigenin/2	3	0.45		-
			$\bar{x} =$	0.35	$\bar{x} =$	0.49
Cymarosyl vs. OH	Side-chain	Cymarin vs. k-strophanthidin		0.40		0.58
		Cymarol vs. strophanthidol		0.46		
			$\bar{x} =$	0.43		
Oleandrosyl vs. OH	Side-chain	Oleandrin vs. oleandrigenin		0.76		0.92
Thevetosyl vs. OH	Side-chain	Neriifolin vs. digitoxigenin		0.21		0.16
OCH ₃ vs. OH	Side-chain	α-Methyldigoxin vs. digoxin		0.49		_
		β-Methyldigoxin vs. digoxin 12-Acetyl-β-methyldigoxin vs.		0.47		0.51
		12-acetyldigoxin		0.49		-
			$\bar{x} =$	0.48		

TABLE IV (continued)

172

The ΔR_M value of the glucosyl group in the sugar residue was used for the calculation of the R_M values of glucogitoroside, erysimoside, scillaren A, k-strophanthin β and k-strophanthoside by adding it for one or two residues to the R_M values of gitoxigenin monodigitoxoside, helveticoside, proscillaridin and cymarin. The R_M values of evomonoside and ouabagenin were calculated from the R_M values of digitoxigenin and ouabain by adding or subtracting, respectively, the R_M value of the rhamnosyl group in the sugar residue.

The ΔR_M value of the acetoxyl group vs. OH at C-16 was used in the calculation of the R_M values of 16-acetylgitoxin and desacetyloleandrin by adding or subtracting it, respectively, from the R_M values of gitoxin and oleandrin.

The R_M values of helveticosol, convallatoxol, strophanthidol and convallatoxin were calculated by adding or subtracting the ΔR_M value for CH₂OH vs. CHO at C-10 from the R_M values of helveticoside, convallatoxin, strophanthidin and convallatoxol.

The R_M values of desglucocheirotoxin and olitoriside were calculated in both systems by adding the ΔR_M values of gulomethylose, or boivinose and glucose, respectively. As gulomethylose and boivinose are the isomeric forms of rhamnose and digitoxose, respectively, the ΔR_M values of the latter forms were used (Table IV). In fact, Davydov⁶ had calculated the same retention values for both pairs of isomers. However, the results for another pair of isomers must be pointed out, *i.e.*, cymarose and oleandrose, whereas Davydov⁶ had calculated the same retention values for these sugar residues, in the present and the Cohnen *et al.* system the ΔR_M values are different.

Finally, the R_M values of α -methyldigoxin, β -methyldigitoxin and α , β -dimethyldigoxin were calculated by means of the ΔR_M values for the α - and/or β -methyl groups in the side-chain.

The equation

$$R_M = 0.202 (\pm 0.046) + 1.027 (\pm 0.021) R_M Cohnen$$
(2)
(n=56; r=0.988; s=0.153; F=2265.3; P<0.005)

calculated by means of both experimental and calculated R_M values is very similar to eqn. 1 and shows that the calculated R_M values do not deviate from the relationship described by eqn. 1 for the experimental R_M values. The slopes in both eqns. 1 and 2 are very close to unity, which explains why the ΔR_M values in Table IV are fairly close in the two systems.

Hence any substituent group tends to induce the same variation of lipophilic character in both TLC systems. Intercepts higher than zero indicate a systematic difference between the two systems, probably due to the different kind of silicone oil used by Cohnen *et al.*¹⁰. Eqn. 2 holds over a wide range of R_M values, with a difference on a logarithmic scale of 4.65, which means a 44 668-fold difference in lipophilicity.

More recently, Dzimiri *et al.*⁷ measured the R_M values of a series of cardiotonic steroids by means of a different TLC system, which had also been used by Cohnen *et al.*¹⁰. The stationary phase was characterized by the presence of octanol instead of silicone oil. The mobile phase was methanol–water (30:70), which yielded the experimental R_M values reported in Tables I and II. When a compound had been tested also by Cohnen *et al.*¹⁰, an average R_M value is reported in Tables I and II.

The following equation describes the relationship between our R_M values and those measured by Dzimiri *et al.*⁷:

$$R_{M} = 1.477 (\pm 0.092) + 1.331 (\pm 0.105) R_{M} D_{\text{Zimiri}}$$
(3)
(n=28; r=0.927; s=0.365; F=159.0; P<0.005)

The correlation coefficient is not as good as that for eqns. 1 and 2. A better equation was obtained when compounds 1, 15, 16, 30 and 35, which showed the largest deviations, were excluded from the analysis:

$$R_{M} = 1.532 (\pm 0.064) + 1.286 (\pm 0.078) R_{M} D_{\text{Zimiri}}$$
(4)
(n=23; r=0.963; s=0.240; F=269.8; P<0.005)

A justification for excluding those compounds might be that they were the most deviant also when correlating the present R_M values with Dzimiri *et al.*'s log *P* values

2	
Ш	
1	
7	
È	
· ·	

OCTANOL-WATER PARTITION COEFFICIENTS AND HPLC RETENTION DATA FOR CARDIAC GLYCOSIDES

Compound No.	Log P	Log P (Dzimiri et al. ⁷)	Log k'	ln V (Davydov et al. ^{4,6})	Log k' (Dzimiri et al. ⁷)	Compound No.	Log P	Log P (Dzimiri et al. ⁷)	Log k'	ln V (Davydov et al. ^{4,6})	Log k' (Dzimiri et al. ⁷)
1	1.14	1.12	1.23	1	-0.44	1£			I		-
2	I	1.09	1.29		-0.43	32	I	I		I	I
3	I	1.23	1.40	I	-0.36	33	I	I	2.01	3.94	
4	Ι	1.26	1.59	3.36	-0.30	34	I		I	I	I
5	I	1.72	1.93	I	-0.01	35	ł	3.46	2.75	1	1.69
6	1	1.98	1.95	-	0.10	36	I	2.15	1.95	Ι	0.36
7	ł	I	1.60	3.25	ſ	37	I	2.04	2.10	ł	0.26
80	I	I	1.72	2.75	I	38	2.09		1.63	1	I
6	I	2.52	1.87	Ι	0.63	39	I	I	1.85	4.01	i
10	ł	2.29	2.25	-	0.20	40	ł	ŀ	1	I	1
11	Ι	2.87	2.29	I	0.61	41	0.64	0.61	1.12	2.18	-0.38
12	I	1.75	1.92	ł	0.05	42	I	-	1.33	2.54	I
13	I	1.76	1.98	ł	0.08	43	1	0.64	1.49	2.90	-0.10
14	I	2.14	2.28	I	0.44	44	I	-0.96	1.32	2.07	-0.66
15	2.64	2.41	1.70	1	0.26	45	Ι	-0.82	1.15	1.69	-0.68
16	ł	2.49	1.79	I	0.28	46	I	I	1.65	16.1	I
17	I	2.45	1.74	1	0.38	47	I	1	I	2.11	I
18	I	2.83	2.04	4.89	0.52	48	I		I	1.95	Ι
19	1	I	2.37	5.47	I	49	ł	1	1.57	2.45	
20	1	I	I	Ι	Ι	50	ł	Ι	I	1.86	-
21	1	-	2.30	4.78	I	51	I	I	1.12	I	I
22	I	I	I	I	1	52	-	I	1.13	I	ł
23	I	3.11	Ι	1	0.92	53	I	-	I	1	I
24	I	1	I	I	ł	54	I	I	1	I	I
25	ļ	1	1.72	I		55	I	1	2.07	Ι	
26	1.76	1.64	1.46	Ι	-0.17	56	-0.02	I	0.83	Ι	ł
27		1.78	I	I	-0.08	ST	1	-1.85	0.75	0.62	-0.85
28	I	1	I	Ι	ŀ	58	ļ	Ι	1.52		I
29		I	1	2.33	I	59	I	I	1.74	I	-
30	Ι	1.67	1.94	4.11	0.11	60	1	I	1.48	I	

(eqn. 5). In the correlation with the log k' values (see eqn. 8) they were not excluded, but again they were among the most deviant compounds.

The higher intercepts in eqns. 3 and 4 are due to the fact that Dzimiri *et al.*⁷ used a stationary phase containing octanol instead of silicone oil. The higher slopes are due to the narrower range of Dzimiri et al's R_M values. In eqns. 3 and 4 about 7–14% of the variance in our R_M values is not explained by the regression.

Relationship between R_M and log P or HPLC data

The log P and log k' values of the cardiac glycosides are reported in Table V. where most of the data available in the literature are also listed. Cohnen et al.¹⁰ and Dzimiri et al.7 measured the octanol-water partition coefficients of cardiac steroids. The best correlation between R_M and log P values was found by Dzimiri et al.⁷. Therefore, in Table V we report only the $\log P$ values of the compounds for which an R_M value in Dzimiri et al.'s system was available. For the compounds tested by both Cohnen et al.¹⁰ and Dzimiri et al.⁷ an average log P is reported in Table V. Eqn. 5, excluding compounds 1, 15, 16, 30 and 35, and eqn. 6, considering only the six genins, can be compared with eqn. 7, calculated with Dzimiri et al.'s R_M and log P values:

$$R_M = 1.248 \ (\pm 0.118) \ + \ 0.634 \ (\pm 0.061) \ \log P_{\text{Dzimiri}}$$
(5)
(n=23; r=0.914; s=0.362; F=107.0; P<0.005)

$$R_M = 0.345 (\pm 0.145) + 0.637 (\pm 0.088) \log P$$
(6)
(n=6; r=0.964; s=0.193; F=52.2; P<0.005)

$$R_{M \text{ Dzimiri}} = -0.252 (\pm 0.068) + 0.516 (\pm 0.034) \log P_{\text{Dzimiri}}$$
(7)
(n=28; r=0.948; s=0.215; F=233.5; P<0.005)

The different intercepts in eqns. 5 and 6 compared with eqn. 7 are due to the use of octanol instead of silicone oil in the Dzimiri et al. TLC stationary phase. The difference between the intercepts in eqns. 5 and 6 is due simply to the high standard error in eqn. 5 and to the fact that the two equations share only two compounds (nos. 26 and 41). On the other hand, the slopes of the three equations are very close.

Obviously the results with eqns. 5 and 7 could have been expected on the basis of eqn. 4. The log k' values reported in Table V were extrapolated to 0% acetonitrile in the mobile phase from the linear relationship between $\log k'$ and acetonitrile concentration as already described¹⁷. In Table V the HPLC data measured by Davydov⁶ and Dzimiri et al.⁷ are also listed. The relationship between the R_M values and the HPLC retention data is described by the following equations:

_ . _

$$R_{M} = -1.488 (\pm 0.192) + 2.109 (\pm 0.110) \log k'$$
(8)
(n=44; r=0.947; s=0.306; F=369.5; P<0.005)
$$R_{M} = -0.249 (\pm 0.170) + 0.716 (\pm 0.054) \ln V$$
(9)
(n=21; r=0.950; s=0.297; F=176.1; P<0.005) (9)

$$R_M = 2.109 (\pm 0.064) + 1.680 (\pm 0.121) \log k'_{\text{Dzimiri}}$$
(10)
(n=28; r=0.938; s=0.336; F=192.0; P<0.005)

The ln V term in eqn. 9 is the retention index used by Davydov⁶.

In eqns. 5 and 6 and 8–10, again about 7–17% of the variance in the R_M values is not explained by the regression. Nevertheless, the log *P* values and the HPLC data from two and three different laboratories, respectively, seem to agree with the R_M values as lipophilic indices of the cardiac steroids.

DISCUSSION

The ΔR_M values in Table IV can be used in order to describe the contribution of substituent groups to the lipophilicity of the whole molecule. As regards the Digitalis genins, the lipophilic character decreases in the order digitoxigenin > gitoxigenin > digoxigenin. In fact, attaching an OH group at C-12 (digoxigenin) or C-16 (gitoxigenin) decreases the lipophilic character of the parent compound, digitoxigenin. According to Dzimiri et al.⁷, digoxigenin is more hydrophilic than gitoxigenin as the OH group at C-12 is more exposed to the complementary hydroxyl groups of the aqueous phase than the OH group at C-16. A similar conclusion can be drawn by considering the fragment values for the hydroxyl group at C-12 and C-16. In fact, the $\Delta \log P$ values for the pairs digoxigenin-digitoxigenin and gitoxigenin-digitoxigenin are -1.50 and -0.88, respectively (Table V). Therefore, the $\Delta \log P$ value for the OH at C-12 is much closer to the aliphatic fragment value of -1.64 for the OH group¹⁸ than that for the OH at C-16. On the other hand, the acetyloxy group has the same hydrophilic character at both C-12 and C-16. Apparently the lactone ring is not able to mask the acetyloxy group at C-16. As a consequence, acetylation of the OH group has opposite effects at C-16 and C-12. k-Strophanthidin with an OH group at C-5 and a formyl group at C-10 is slightly more hydrophilic than digoxigenin. Ouabagenin (g-strophanthidin) is the most hydrophilic genin because of the addition of two other OH groups at C-1 and C-11 and the replacement of the formyl group with a more hydrophilic CH₂OH group at C-10. On the other hand, the replacement of the OH group at C-16 with a formyl group makes 16-formylgitoxin less lipophilic than gitoxin.

The sugar residues at C-3 examined in the present and Cohnen *et al.*'s system, *i.e.*, oleandrose, cymarose, digitoxose, rhamnose, thevetose and glucose, have polarities increasing in that order. As mentioned above, Davydov⁶ obtained the same order of ranking except for oleandrose and cymarose, for which the same retention value was obtained. The introduction of an α - and/or β -methyl group and an acetyl group(s) into the sugar side-chain increases the lipophilicity. It may be noted that our experimental R_M values for heptaacetyl-k-strophanthoside and pentaacetylgitoxin, 3.41 and 4.59, respectively, are very close to those calculated in the present system from the R_M value of k-strophantoside and 16-acetylgitoxin, 3.44 and 4.33, respectively. The use of the average ΔR_M for the acetyl group in the side-chain in the calculation of the R_M value for strophantidin-3-acetate in the Cohnen *et al.* system may also be pointed out. This seems to be justified by the fact that in the present system the OCOCH₃ vs. OH group at C-3 has a ΔR_M value of 0.29 which is not far from the average ΔR_M of 0.35 reported in Table IV for any acetyl group in the side-chain.

The additivity of the lipophilic contribution of any substituent group at C-3 seems to rule out any significant kind of interaction between the steroid nucleus and the sugar side-chain. Fig. 1 shows histograms which illustrate the increments in lipophilicity due to the addition of the same sugar residue in each family of genins. It is shown that in each of the *Digitalis* derivatives families the lipophilicity increases in the

Fig. 1. Influence of side-chain composition on the overall lipophilicity of *Digitalis* cardiac glycosides. The different subsets are (A) digitoxigenin, (B) gitoxigenin and (C) digoxigenin.

order genin < monodigitoxoside < bisdigitoxside < trisdigitoxoside < α - or β -acetyl < α , β -diacetyl. Lanatoside A, B and C are less lipophilic than the α - or β -acetyl derivatives because of the presence of a glucosyl group in the side-chain.

A comment is deserved from a more general point of view. The present R_M values were obtained by extrapolation from the linear relationship between R_M values and acetone concentrations in the mobile phase. The extrapolation technique allows the calculation of a theoretical R_M value at 0% acetone in the mobile phase, *i.e.*, in a standard system where all the compounds could be compared.

Another great advantage over the determination of the R_M values at only one organic solvent concentration in the mobile phase is that in this way one can avoid the error that might arise because of different slopes of the straight lines describing the relationship between R_M values and organic solvent concentration in the mobile phase. Two compounds might have the same R_M value at a given organic solvent concentration and different extrapolated R_M values. Finally, the extrapolation procedure tends to yield a wider range of R_M values, which is reflected in the slopes of eqns. 3 and 4. In fact, the R_M values in the octanol system were measured at only one organic solvent concentration in the mobile phase.

CONCLUSION

The chromatographic data and the partition coefficients from the literature agree well with the present R_M values in describing the lipophilicity of cardiac steroids. The reliability of the ΔR_M values in Table IV is an important aspect. In fact, the

fragment values can be used in calculating the R_M values of other cardiac steroids. Finally, this work seems to have demonstrated some advantages of reversed-phase TLC or any other chromatographic system over the use of the classical partition coefficient^{7,19}. The chromatographic method is simple and rapid; it requires little material, which is important with compounds that are expensive and/or difficult to synthesize, such as the cardiac steroids; the material does not need to be very pure; and the detection of spots by non-specific methods avoids the need for specific quantitative analytical methods.

REFERENCES

- 1 F. W. Hempelmann, N. Heinz and H. Flasch, Arzneim.-Forsch., 28 (1978) 2182.
- 2 F. W. Hempelmann and N. Heinz, Arzneim.-Forsch., 28 (1978) 2185.
- 3 F. J. Zeelen, Quant. Struct.-Act. Relat., 5 (1986) 131.
- 4 V. Ya. Davydov, M. Elizalde Gonzales and A. V. Kiselev, J. Chromatogr., 248 (1982) 49.
- 5 K. Jinno, J. Chromatogr., 264 (1983) 485.
- 6 V. Ya. Davydov, J. Chromatogr., 365 (1986) 123.
- 7 N. Dzimiri, U. Fricke and W. Klaus, Br. J. Pharmacol., 91 (1987) 31.
- 8 N. Dzimiri and U. Fricke, Br. J. Pharmacol., 93 (1988) 281.
- 9 W. Schonfeld and K. R. H. Repke, Quant. Struct.-Act. Relat., 7 (1988) 160.
- 10 E. Cohnen, H. Flasch, N. Heinz and F. W. Hempelmann, Arzneim.-Forsch., 28 (1978) 2179.
- 11 E. Tomlinson, J. Chromatogr., 113 (1975) 1.
- 12 S. H. Unger, P. S. Cheung, G. H. Chiang and J. R. Cook, in W. J. Dunn, J. H. Block and R. S. Pearlman (Editors), *Partition Coefficient Determination and Estimation*, Pergamon Press, New York, 1986, pp. 69–81.
- 13 L. Nover, G. Juttner, S. Noack, G. Baumgarten and M. Luckner, J. Chromatogr., 39 (1969) 419.
- 14 L. Nover, G. Baumgarten and M. Luckner, J. Chromatogr., 39 (1969) 450.
- 15 G. L. Biagi, A. M. Barbaro, M. F. Gamba and M. C. Guerra, J. Chromatogr., 41 (1969) 371.
- 16 T. Fujita, J. Iwasa and C. Hansch, J. Am. Chem. Soc., 86 (1964) 5175.
- 17 M. C. Guerra, A. M. Barbaro, G. Cantelli Forti, M. C. Pietrogrande, P. A. Borea and G. L. Biagi, J. Liq. Chromatogr., 7 (1984) 1495.
- 18 C. Hansch and A. J. Leo, Substituent Constants for Correlation Analysis in Chemistry and Biology, Wiley-Interscience, New York, 1979.
- 19 G. L. Biagi, A. M. Barbaro and M. C. Guerra, Adv. Chem. Ser., 114 (1972) 61.